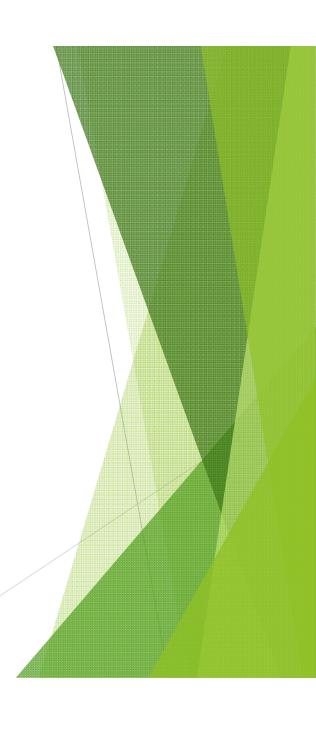
Forest functions of small-scale protected areas on Training forest Enterprise Masaryk's forest Křtiny


Ecosystem approach to evaluation of forest functions according to Vyskot et al. Method

Jiří Schneider, Ilja Vyskot

Department of Environmentalistics and Natural Resources
Faculty of Regional Development and International Studies
Mendel University in Brno, Brno, Czech Republic

Evaluation of Forest Functions According to Vyskot et al. - working steps

- 1. Six forest functions
- 2. Forest stand types tree species composition
- 3. Functionally determinative criteria
- 4. REAL POTENTIAL OF FOREST FUNCTIONS
- 5. Functionally reduction criteria
- 6. REAL EFFECT OF FOREST FUNCTIONS
- 7. FACTOR OF THE TOPICAL SOCIAL INTEREST
- 8. FINANCIAL EXPRESSION OF FOREST FUNCTION VALUE
- 9. SAPFO

Forest Functions

BIOPRODUCTION

EDAPHIC-SOIL CONSERVATION

ECOLOGICAL-STABILIZATION

SOCIAL-RECREATION

HYDRIC-WATER MANAGEMENT

SANITARY-HYGIENIC

Forest ecosystem parameters = functionally determinative criteria

► Climatic

► Hydrological

Geopedological

► Terrain

▶ Biotic

Geopedological parameters - value classification

Degree	Interval %	Potential infiltration - annual amount W mm	Soil permeability K _p m/d	Soil depth z cm	Geopedo- logical coef. GP	Humus form Hf	Slope coef.	Intensity of humification C/N
0	<11	<211	<0.7	<30	0-0.73	without soil humus	0-1.59	<17
1	11-30	211-575	0.7-1.8	30-67	0.74-1.19	mull	1.60-4.35	17-20
2	31-45	576-863	1.9-2.7	68-95	1.20-1.63	mull-moder	4.36-6.53	21-25
3	46-55	864-1055	2.8-3.3	96-114	1.64-1.95	moder	6.54-7.98	26-30
4	56-70	1056-1343	3.4-4.2	115-143	1.96-2.49	mor-moder	7.99-10.15	31-35
5	71-90	1344-1726	4.3-5.4	144-181	2.50-3.30	moder-mor	10.16- 13.05	36-40
6	>90	>1726	>5.4	>181	3.31-3.75	mor	13.06- 15.00	>40

Real potentials of forest functions of the functional MGS 45 according to particular function criteria (example)

Target MGS		REAL POTENTIAL OF FOREST FUNCTIONS – RP _{FL}																																								
45	BP		ES	5				ΗV	7			EP							SR												ZH							$\Sigma \mathrm{RP}_{\mathrm{FL}}$				
Stand type	RP Ø	Species diversity	Natural composition	RP Ø	Horizontai	Potential infiltration	Potential runoff	Interception	Evapotranspiration	Soil permeability	RP Ø	Rain factor	Cital acter Istic soli	Stopemennation	G – P factor	Soil depth	Humification	Forest floor form	RP Ø	Trz – growing season	Physiological period	$N-summer\ days$	N – rain days	N – days with snow		N _v – relief energy	i errain accessibility	Soil depth Site bearing capacity	Physiol. biodiversity	Herb diversity	Herb cover	RP Ø	Max. T _v of air	N-icy days	N-tropical days	Duration of sunshine	Filtration effect	Air pollution load	Allergenic load (d,b)	RP Ø	$\Sigma\mathrm{RP}_\mathrm{FL}$	RPFL class
C1	5	0	1	1	0	0	0	2	1	4	2	4	3	1	1	3	3	5	3	4	4	4	4	2	4	2	4	2 6	2	3	4	3	2	4	2	4	6	5	6	5	19	III
D1	5	1	2	2	0	0	0	2	1	4	2	4	3	2	1	3	3	5	3	4	4	4	5	1	4	1	4	2 6	3	3	4	4	2	4	2	4	6	5	6	5	21	IV
M1P3	4	2	3	3	0	0	0	2	1	4	2	5	3	1	1	3	3	5	3	4	4	4	5	1	4	1	4	2 6	3	3	4	4	2	4	2	4	6	5	5	5	21	IV
D1P3	4	1	2	2	0	0	0	2	1	4	2	5	3	1	1	3	3	5	3	4	4	4	5	1	4	1	5	2 6	3	3	4	4	2	4	2	4	6	5	6	5	20	III
D1P4	5	1	1	1	0	0	0	2	1	4	2	4	3	1	1	3	3	5	3	4	4	4	4	2	4	2	4	2 6	3	3	4	4	2	4	2	4	6	5	6	5	20	III
M1P4	5	2	2	2	0	0	0	2	1	4	2	4	3	1	1	3	3	5	3	4	4	4	4	2	4	2	4	2 6	3	3	4	4	2	4	2	4	6	5	5	5	21	IV
C6	5	0	5	3	0	2	0	4	0	4	2	4	3	2	1	3	4	3	3	4	4	4	4	2	4	2	4	2 6	0	4	4	3	2	4	2	4	4	5	6	5	21	IV
M1P6	5	2	2	2	0	0	0	2	1	4	2	4	3	2	1	3	3	5	3	4	4	4	4	2	4	2	4	2 6	5	4	4	5	2	4	2	4	6	5	6	5	22	IV
D6	5	1	6	4	0	1	0	4	0	4	2	4	3	2	1	3	4	3	3	4	4	4	5	1	4	1	4	2 6	1	4	4	3	2	4	2	4	4	5	6	5	22	IV
M1P5	5	2	3	3	0	0	0	2	1	4	2	5	2	1	3	0	3	5	3	4	4	4	5	1	4	1	5	2 6	5	3	4	5	2	4	2	4	6	5	5	5	23	IV

Ecological-stabilisation forest function

► Ecological-stabilization function (ecostabilization) – is the potential of a forest ecosystem to maintain dynamic balance and to resist to effects of stress factors on the basis of self-regulation mechanisms and balance of energo-material flows.

Ecological-stabilization effects:

- function of self-regulation processes and feedbacks
- balance of energo-material flows
- resistance to stress factors

Criteria of ecological-stabilisation forest function

- Diversity of tree species composition
- Naturalness of tree species composition

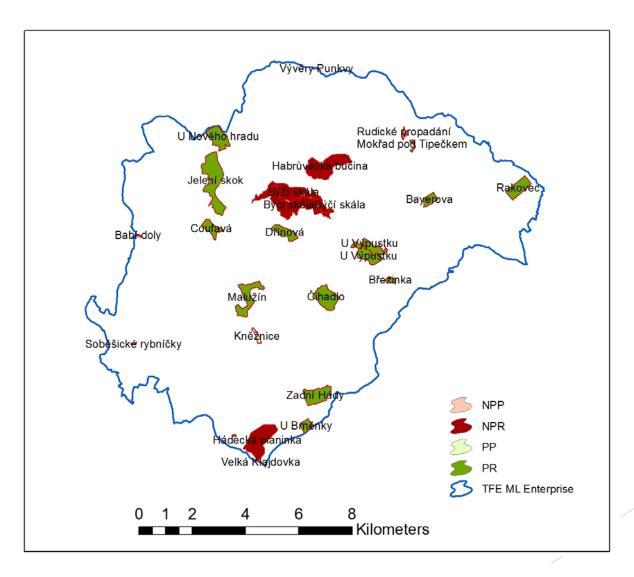
Function degree	Function interval %	Function criterion Species diversity D _d %	Interaction criterion dB Stand type at the level of part of a stand (storey)
0	<11	С	Data of species
1	11-30	DP	composition and absolute height
2	31-45	MZ	class (AVB) of
3	46-55	MZP	stands of dB of forests of the CR
4	56-70	MPP	for the actual
5	71-90	ZZZ	differentiation of
6	>90	PPPP	management groups of stands (MGS)

Criteria of ecological-stabilisation forest function

- Diversity of tree species composition
- Naturalness of tree species composition

Degree name	Code	Degree of naturalness
unsuitable	0	paraclimax - ecotope change (e.g. locust forests), tree species representation of natural composition < 10%
very low	1	exotic species, tree species representation of natural composition 11 - 30%
low	2	monocultures endangered by air pollution and damaged by game, allochthonous tree species, substitute stands of destruction air pollution stages of A and B zones, genetically unsuitable stands, species representation of natural composition 11 - 30%
average	3	monocultures, cultivated coenoses, unsuitable species composition, species representation of natural composition < 50%
high	4	semi-cultivated forest, simple composition, species representation of natural composition 51 - 70%
very high	5	close-to-nature forest differentiated from species and spatial aspects, species representation of natural composition 71 - 90%
exceptional	6	natural species composition corresponding to natural conditions, > 90%

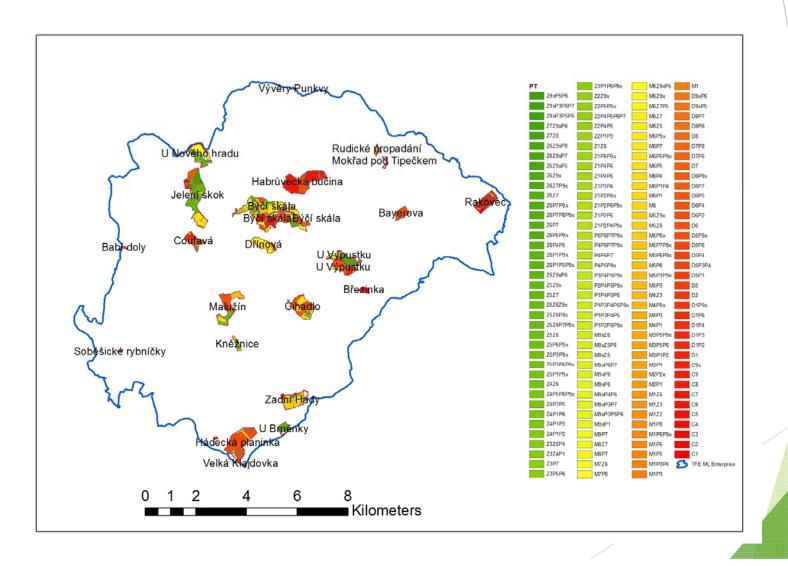
Criteria of the ecological-stabilisation function - significance weights

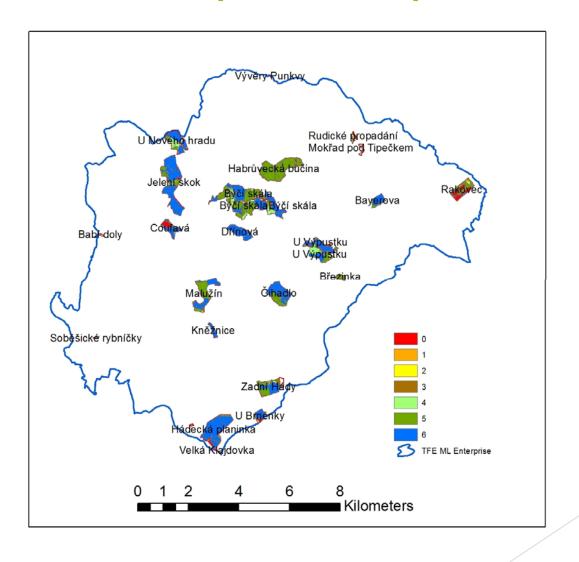

	1	2
K ₍₁₋₂₎	Species diversity	Natural composition
sign.	D_d	P_s
a ₍₁₋₂₎ v %	40	60

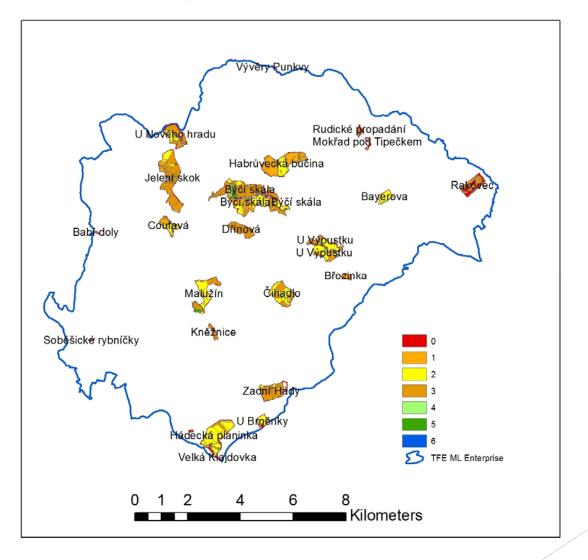
Factor of the topical social interest (FAZ)

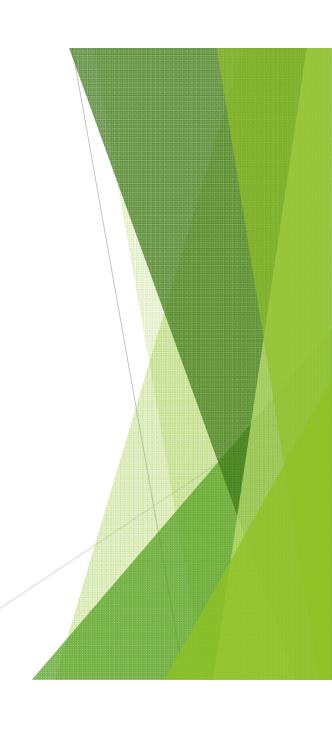
- is a factor (indicator) which does not determine the ecosystem but exclusively the social value of forest functions

Ecological-stabilization function group - FAZ	
Forests of national parks (1st zone)	3.0
Forests of national nature reserves	3.0
Forests of nature reserves	2.6
Forests of national parks (2nd zone)	2.6
Forests of protected landscape areas (1st zone)	2.3
Forests of supra-regional territorial systems of ecological stability	1.9
Forests of regional territorial systems of ecological stability	1.9
Forests of local territorial systems of ecological stability	1.6
Forests of protected landscape areas (2nd zone)	1.3
Forests of nature parks	1.3
Multifunctional forests with the standard level of ecological stability	1.0
Forests with the decreased function of ecological stability	0.6
Forests destroyed from the ecological-stabilization viewpoint	0.3

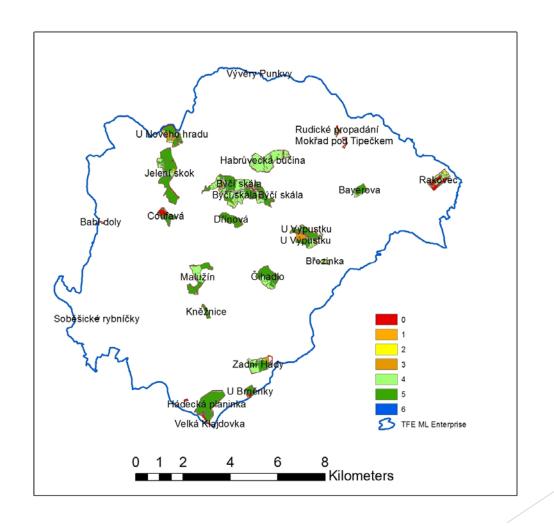

Small-scale protected areas on TFE ML Křtiny




Tree species composition - stand types



Naturalness of tree species composition



Tree species composition diversity

Real potential of ecological-stabilisation forest function

Practical utilisation of Method within management of protected areas

Description of recent state

Multifunctional management with accent of nature conservation

Monitoring of management measures effectiveness

